A Deficiência de Energia Relativa no Esporte

16 de janeiro de 2019 | Por

Em 2014, o Comitê Olímpico Internacional (COI) publicou uma declaração de consenso intitulada “Além da Tríade da Mulher Atleta: Deficiência Relativa de Energia para o Esporte (Relative Energy Deficiency in Sport ou RED-S)“.

A Síndrome de Deficiência de Energia Relativa no Esporte refere-se ao “funcionamento fisiológico prejudicado causado por deficiência energética relativa e inclui, mas não se limita a, comprometimentos da taxa metabólica, função menstrual, saúde óssea, imunidade, síntese protéica e saúde cardiovascular”. O fator etiológico dessa síndrome é a baixa disponibilidade de energia.

Originalmente chamada de “Tríade da Mulher Atleta” e mais recentemente atualizada para incluir componentes psicológicos e físicos adicionais, a Deficiência de Energia Relativa no  Esporte (RED-S) é uma condição que pode afetar atletas de qualquer idade e sexo. RED-S ocorre quando um desequilíbrio na ingestão e produção de energia tem efeitos prejudiciais na saúde óssea, função menstrual (em mulheres), taxa metabólica, função imunológica, saúde cardiovascular e saúde psicológica.

A RED-S pode se sobrepor a um transtorno alimentar ou servir como um fator de risco para o início do transtorno alimentar, mas não necessariamente. Mesmo quando a RED-S não se sobrepõe a uma apresentação típica do transtorno alimentar, a deficiência de energia pode causar sérios problemas de saúde física e psicológica. Uma preocupação naqueles com RED-S é a osteoporose. O baixo crescimento ósseo como resultado da deficiência de energia em jovens pode levar a fraturas por estresse. Além disso, os indivíduos com evidências de RED-S aumentaram o risco de lesão, diminuíram a resistência e reduziram a força muscular, juntamente com a diminuição da coordenação, julgamento prejudicado, irritabilidade e depressão. Embora os atletas possam acreditar que aumentarão o desempenho esportivo reduzindo a ingestão calórica e aumentando o cronograma de treinamento, ocorre o oposto. O desempenho esportivo fica abaixo da disponibilidade de energia. 

Para atletas em todos os níveis de participação esportiva, avaliar as necessidades de ingestão e ajustar a ingestão para atender às necessidades de treinamento é vital. Para alcançar o equilíbrio energético, o aumento de um cronograma de treinamento, juntamente com o crescimento e desenvolvimento normais, requer um aumento no consumo de energia.

A Baixa Disponibilidade de Energia (BDE), que sustenta o conceito de RED-S, é um descompasso entre a ingestão alimentar do atleta (dieta) e a energia gasta no exercício, deixando energia inadequada para suportar as funções exigidas pelo corpo para manter a saúde e o desempenho ideais. Operacionalmente, a disponibilidade de energia (DE) é definida como: onde o Gasto Energético do Exercício (GEE) é calculado como a energia adicional gasta acima da vida diária durante o exercício, e o resultado geral é expresso em relação à massa livre de gordura, refletindo os tecidos mais metabolicamente ativos do corpo.

Os efeitos da Baixa Disponibilidade de Energia (BDE) no sistema endócrino foram descritos predominantemente em atletas do sexo feminino e apenas recentemente em atletas do sexo masculino. Os achados em algumas atletas femininas nos estados de Baixa Disponibilidade de Energia incluem interrupção do eixo hipotalâmico-hipofisário-gonadal, alterações na função tireoidiana, alterações nos hormônios reguladores do apetite (por exemplo, diminuição da leptina e ocitocina, aumento da grelina , peptídeo YY e adiponectina), diminuição da insulina e do fator de crescimento semelhante à insulina 1 (IGF-1), aumento da resistência ao hormônio do crescimento (GH) e elevação do cortisol. Muitas dessas alterações hormonais provavelmente ocorrem para economizar energia. funções corporais mais importantes ou usar as reservas de energia do corpo para processos vitais.

Mudanças específicas nos homens não são completamente compreendidas; entretanto, a redução da pulsatilidade e da amplitude do hormônio luteinizante (LH) tem sido descrita em uma série de corredores de maratonas masculinas, uma população de alto risco para a Baixa Disponibilidade de Energia. Outros estudos, principalmente em populações masculinas de endurance, mostraram reduções na testosterona e achados inconsistentes em diferenças nos parâmetros basais de LH. 

Estabelece-se que a Baixa Disponibilidade de Energia (BDE) contribui para a saúde óssea prejudicada em atletas, particularmente mulheres. Estudos transversais de atletas do sexo feminino fisicamente ativas com oligomenorreia / amenorreia ou Baixa Disponibilidade de Energia (BDE) medida demonstraram diminuição da densidade de massa óssea, alteração da micro-arquitetura óssea e marcadores de turnover ósseo, diminuição da estimativa da força óssea e aumento do risco de lesões ósseas em comparação com atletas eumanorréicos e aqueles que são disponibilidade energética normal. Populações específicas de esportes femininos e masculinos têm maior risco de densidade mineral óssea menor, incluindo jóqueis, corredores, nadadores e ciclistas. Locais anatômicos com menor carga óssea e / ou maior conteúdo trabecular versus osso cortical (coluna lombar e rádio versus quadril total) apresentam maior risco de baixa densidade mineral óssea e microarquitetura prejudicada em populações suscetível a Baixa Disponibilidade Energética.

O baixo índice de massa corporal (IMC) é um marcador substituto imperfeito para a Baixa Disponibilidade energética. No entanto, o IMC ≤17,5 kg / m2, <85% do peso corporal esperado para adolescentes ou ≥10% de perda de peso em 1 mês são indicadores propostos da baixa disponibilidade energética, e, de fato, tanto o IMC quanto o peso corporal esperados estão associados a maior risco de baixa densidade mineral óssea em ambos os sexos. A Baixa Disponibilidade de Energia (BDE)  pode ser acompanhada por Distúrbios alimentares, disfunção menstrual e baixa densidade mineral óssea, e a combinação de fatores coloca os atletas em maior risco de lesão por estresse ósseo.

Aqui estão algumas coisas para lembrar ao avaliar se seu corpo está recebendo a ingestão adequada (comida) em relação à produção (exercício):

1- A perda da menstruação não é uma parte normal do treinamento; é uma bandeira vermelha. Enquanto algumas mulheres acham que períodos irregulares ou faltosos são uma parte normal do treinamento para o esporte, a interrupção da menstruação é um sinal de deficiência de energia. Períodos irregulares indicam que é provável que uma pessoa experimente outros elementos de RED-S, incluindo perda de densidade óssea. Perda de menstruação pode acontecer mesmo quando as meninas e as mulheres não estão com um peso baixo.

2- O aumento da ingestão é necessário se um programa de treinamento aumentar. A fim de atender às necessidades de treinamento, é necessário fazer refeições e lanches regulares. Pode ser necessário adicionar lanches extras durante o dia, quando a programação de treinamento aumenta. Consulte um nutricionista para ajudá-lo a avaliar suas necessidades energéticas.

3-Muito exercício pode ser problemático. Altos níveis de exercício podem levar a alto risco de lesão. Os corpos funcionam bem quando estão ativos e o exercício tem muitos benefícios; no entanto, os corpos também precisam de muito descanso. Para indivíduos com um transtorno alimentar ativo, o exercício vigoroso é desencorajado, mas o excesso de treinamento pode ser problemático mesmo para aqueles que não têm um transtorno alimentar.

4- O “corpo ideal” retratado nos esportes pode ser um padrão inatingível. Alguns esportes podem ter diferenças específicas em como um tipo de corpo “ideal” pode ser retratado. Por exemplo, o corpo “ideal” retratado para um ginasta é diferente do de um tenista. Embora muitas vezes haja uma presunção de que alcançar um tipo de corpo específico resultará em melhor desempenho, esse não é o caso. Diferentes indivíduos têm diferentes tipos de corpo como resultado de seus genes, mesmo se aderirem aos programas de treinamento similares. Além disso, ter um corpo que não adere aos padrões “típicos” de um esporte não impede a participação, o prazer, a melhoria e o sucesso nesse esporte. Para muitos indivíduos, as tentativas de buscar um ideal corporal específico diminuirão seu desempenho esportivo à medida que experimentam deficiência de energia.

A conclusão é que a participação esportiva deve ser benéfica, não prejudicial ao seu corpo. Estimar corretamente e abordar as necessidades de energia é a melhor maneira de equipar seu corpo para os rigores do treinamento.

Referências Bibliográficas

↵Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad – relative energy deficiency in sport (RED-S). Br J Sports Med 2014;48:491–7. doi:10.1136/bjsports-2014-093502Abstract/FREE Full TextGoogle Scholar

↵De Souza MJ, Williams NI, Nattiv A, et al. Misunderstanding the female athlete triad: refuting the IOC consensus statement on Relative Energy Deficiency in Sport (RED-S). Br J Sports Med 2014;48:1461–5. doi:10.1136/bjsports-2014-093958FREE Full TextGoogle Scholar

↵Mountjoy M, Sundgot-Borgen J, Burke L, et al. Authors’ 2015 additions to the IOC consensus statement: Relative Energy Deficiency in Sport (RED-S). Br J Sports Med 2015;49:417–20. doi:10.1136/bjsports-2014-094371FREE Full TextGoogle Scholar

↵Constantini N. Medical concerns of the dancer. IMS World Congress of Sports Medicine. Budapest, Hungary, 2011.Google Scholar

↵Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci 2011;29:S7–15. doi:10.1080/02640414.2011.588958CrossRefPubMedWeb of ScienceGoogle Scholar

↵Burke L, Deakin VMelin A, Lundy B. Measuring energy availability. In: Burke L, Deakin V, eds. Clinical Sports Nutrition. Sydney: McGraw-Hilll, 2015:146–57.Google Scholar

↵Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol Regul Integr Comp Physiol 1994;266:R817–R823. doi:10.1152/ajpregu.1994.266.3.R817PubMedGoogle Scholar

↵Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 2003;88:297–311. doi:10.1210/jc.2002-020369CrossRefPubMedWeb of ScienceGoogle Scholar

↵Burke LM, Deakin V. Clinical sports nutrition. 5th edn: McGraw-Hilll Education Australia, 2015.Google Scholar

↵Lieberman JL, DE Souza MJ, Wagstaff DA, et al. Menstrual disruption with exercise is not linked to an energy availability threshold. Med Sci Sports Exerc 2018;50:551–61. doi:10.1249/MSS.0000000000001451Google Scholar

↵Williams NI, Leidy HJ, Hill BR, et al. Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. Am J Physiol Endocrinol Metab 2015;308:E29–E39. doi:10.1152/ajpendo.00386.2013CrossRefPubMedGoogle Scholar

↵Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med 2014;48:540–5. doi:10.1136/bjsports-2013-093240Abstract/FREE Full TextGoogle Scholar

↵Vanheest JL, Rodgers CD, Mahoney CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc 2014;46:156–66. doi:10.1249/MSS.0b013e3182a32b72CrossRefPubMedGoogle Scholar

↵Burke LM, Melin A, Lundy B. Pitfalls and problems with measuring energy availability. Int J Sport Nutr Exerc Metab 2018. In press.Google Scholar

↵Cialdella-Kam L, Guebels CP, Maddalozzo GF, et al. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients 2014;6:3018–39. doi:10.3390/nu6083018Google Scholar

↵Aparicio-Ugarriza R, Mielgo-Ayuso J, Benito PJ, et al. Physical activity assessment in the general population; instrumental methods and new technologies. Nutr Hosp 2015;31(Suppl 3):219–26. doi:10.3305/nh.2015.31.sup3.8769Google Scholar

↵Levine JA. Measurement of energy expenditure. Public Health Nutr 2005;8:1123–32. doi:10.1079/PHN2005800PubMedWeb of ScienceGoogle Scholar

↵Pinheiro Volp AC, Esteves de Oliveira FC, Duarte Moreira Alves R, et al. Energy expenditure: components and evaluation methods. Nutr Hosp 2011;26:430–40. doi:10.1590/S0212-16112011000300002PubMedGoogle Scholar

↵Barron E, Cano Sokoloff N, Maffazioli GDN, et al. Diets high in fiber and vegetable protein are associated with low lumbar bone mineral density in young athletes with oligoamenorrhea. J Acad Nutr Diet 2016;116:481–9. doi:10.1016/j.jand.2015.10.022Google Scholar

↵Gaskins AJ, Mumford SL, Zhang C, et al. Effect of daily fiber intake on reproductive function: the BioCycle Study. Am J Clin Nutr 2009;90:1061–9. doi:10.3945/ajcn.2009.27990Abstract/FREE Full TextGoogle Scholar

↵Heikura IA, Uusitalo ALT, Stellingwerff T, et al. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab 2017:1–30. doi:10.1123/ijsnem.2017-0313Google Scholar

↵Melin A, Tornberg ÅB, Skouby S, et al. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports 2016;26:1060–71. doi:10.1111/sms.12516Google Scholar

↵Reed JL, De Souza MJ, Kindler JM, et al. Nutritional practices associated with low energy availability in Division I female soccer players. J Sports Sci 2014;32:1499–509. doi:10.1080/02640414.2014.908321Google Scholar

↵Barrack MT, Fredericson M, Tenforde AS, et al. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med 2017;51:200–5. doi:10.1136/bjsports-2016-096698Abstract/FREE Full TextGoogle Scholar

↵Berkovich BE, Eliakim A, Nemet D, et al. Rapid weight loss among adolescents participating in competitive judo. Int J Sport Nutr Exerc Metab 2016;26:276–84. doi:10.1123/ijsnem.2015-0196Google Scholar

↵Burke LM, Tenforde AS, Morton JP, et al. Relative energy deficiency in sport (RED-S) in male athletes. Int J Sport Nutr Exerc Metab 2018. In press.Google Scholar

↵Fagerberg P. Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab 2017:1–31. doi:10.1123/ijsnem.2016-0332Google Scholar

↵Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the Female Athlete Triad in male athletes. Sports Med 2016;46:171–82. doi:10.1007/s40279-015-0411-yGoogle Scholar

↵Viner RT, Harris M, Berning JR, et al. Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. Int J Sport Nutr Exerc Metab 2015;25:594–602. doi:10.1123/ijsnem.2015-0073Google Scholar

↵Wilson G, Hawken MB, Poole I, et al. Rapid weight-loss impairs simulated riding performance and strength in jockeys: implications for making-weight. J Sports Sci 2014;32:383–91. doi:10.1080/02640414.2013.825732Google Scholar

↵Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med 2007;37:348–52. doi:10.2165/00007256-200737040-00019CrossRefPubMedWeb of ScienceGoogle Scholar

↵Hackney AC, Moore AW, Brownlee KK. Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung 2005;92:121–37. doi:10.1556/APhysiol.92.2005.2.3PubMedGoogle Scholar

↵Hooper DR, Kraemer WJ, Saenz C, et al. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol 2017;117:1349–57. doi:10.1007/s00421-017-3623-zGoogle Scholar

↵Blauwet CA, Brook EM, Tenforde AS, et al. Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: implications for the para athlete population. Sports Med 2017;47:1697–708. doi:10.1007/s40279-017-0696-0Google Scholar

↵Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 2004;7:635–9. doi:10.1097/00075197-200411000-00008CrossRefPubMedWeb of ScienceGoogle Scholar

↵Price M. Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med 2010;40:681–96. doi:10.2165/11531960-000000000-00000PubMedGoogle Scholar

↵Krempien JL, Barr SI. Risk of nutrient inadequacies in elite Canadian athletes with spinal cord injury. Int J Sport Nutr Exerc Metab 2011;21:417–25. doi:10.1123/ijsnem.21.5.417PubMedGoogle Scholar

↵Krempien JL, Barr SI. Eating attitudes and behaviours in elite Canadian athletes with a spinal cord injury. Eat Behav 2012;13:36–41. doi:10.1016/j.eatbeh.2011.11.005PubMedGoogle Scholar

↵Broad ECrosland J, Boyd C. Cerebral palsy and acquired brain injuries. Broad E, ed. Sports nutrition for paralympic athletes. Boca Raton, Florida, USA, 2014:91–105.Google Scholar

↵Colantonio A, Mar W, Escobar M, et al. Women’s health outcomes after traumatic brain injury. J Womens Health 2010;19:1109–16. doi:10.1089/jwh.2009.1740Google Scholar

↵Ranganathan P, Kumar RG, Davis K, et al. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: a case series analysis. Brain Inj 2016;30:452–61. doi:10.3109/02699052.2016.1144081Google Scholar

↵Ripley DL, Harrison-Felix C, Sendroy-Terrill M, et al. The impact of female reproductive function on outcomes after traumatic brain injury. Arch Phys Med Rehabil 2008;89:1090–6. doi:10.1016/j.apmr.2007.10.038PubMedGoogle Scholar

↵Gonzalez EG, Corcoran PJ, Reyes RL. Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil 1974;55:111–9.PubMedWeb of ScienceGoogle Scholar

↵Sherk VD, Bemben MG, Bemben DA. BMD and bone geometry in transtibial and transfemoral amputees. J Bone Miner Res 2008;23:1449–57. doi:10.1359/jbmr.080402CrossRefPubMedGoogle Scholar

↵Goktepe AS, Yilmaz B, Alaca R, et al. Bone density loss after spinal cord injury: elite paraplegic basketball players vs. paraplegic sedentary persons. Am J Phys Med Rehabil 2004;83:279–83.CrossRefPubMedWeb of ScienceGoogle Scholar

↵Pernick Y, Nichols JF, Rauh MJ, et al. Disordered eating among a multi-racial/ethnic sample of female high-school athletes. J Adolesc Health 2006;38:689–95. doi:10.1016/j.jadohealth.2005.07.003CrossRefPubMedWeb of ScienceGoogle Scholar

↵Rhea DJ. Eating disorder behaviors of ethnically diverse urban female adolescent athletes and non-athletes. J Adolesc 1999;22:379–88. doi:10.1006/jado.1999.0229CrossRefPubMedWeb of ScienceGoogle Scholar

↵Lappe JM, Stegman MR, Recker RR. The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos Int 2001;12:35–42. doi:10.1007/s001980170155CrossRefPubMedWeb of ScienceGoogle Scholar

↵Tam N, Santos-Concejero J, Tucker R, et al. Bone health in elite Kenyan runners. J Sports Sci 2018;36:456–61. doi:10.1080/02640414.2017.1313998Google Scholar

↵Mukeshi M, Thairu K. Nutrition and body build: a Kenyan review. World Rev Nutr Diet 1993;72:218–26.PubMedGoogle Scholar

↵Beis LY, Willkomm L, Ross R, et al. Food and macronutrient intake of elite Ethiopian distance runners. J Int Soc Sports Nutr 2011;8:7–19. doi:10.1186/1550-2783-8-7PubMedGoogle Scholar

↵Muia EN, Wright HH, Onywera VO, et al. Adolescent elite Kenyan runners are at risk for energy deficiency, menstrual dysfunction and disordered eating. J Sports Sci 2016;34:598–606. doi:10.1080/02640414.2015.1065340Google Scholar

↵Manore MM, Patton-Lopez MM, Meng Y, et al. Sport nutrition knowledge, behaviors and beliefs of high school soccer players. Nutrients 2017;9:350. doi:10.3390/nu9040350Google Scholar

↵Iwamoto J, Sato Y, Takeda T, et al. Analysis of stress fractures in athletes based on our clinical experience. World J Orthop 2011;2:7–12. doi:10.5312/wjo.v2.i1.7CrossRefPubMedGoogle Scholar

↵Quah YV, Poh BK, Ng LO, et al. The female athlete triad among elite Malaysian athletes: prevalence and associated factors. Asia Pac J Clin Nutr 2009;18:200–8.PubMedGoogle Scholar

↵Allaway HCM, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Investig 2016;25:91–119. doi:10.1515/hmbci-2015-0053Google Scholar

↵Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 2004;19:1231–40. doi:10.1359/JBMR.040410CrossRefPubMedWeb of ScienceGoogle Scholar

↵Logue D, Madigan SM, Delahunt E, et al. Low energy availability in athletes: a review of prevalence, dietary patterns, physiological health, and sports performance. Sports Med 2018;48:73–96. doi:10.1007/s40279-017-0790-3Google Scholar

↵Misra M. Neuroendocrine mechanisms in athletes. Handb Clin Neurol 2014;124:373–86. doi:10.1016/B978-0-444-59602-4.00025-3Google Scholar

↵Jasienska G. Energy metabolism and the evolution of reproductive suppression in the human female. Acta Biotheor 2003;51:1–18. doi:10.1023/A:1023035321162CrossRefPubMedWeb of ScienceGoogle Scholar

↵Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol 2004;287:R1277–96. doi:10.1152/ajpregu.00475.2004CrossRefPubMedWeb of ScienceGoogle Scholar

↵MacConnie SE, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med 1986;315:411–7. doi:10.1056/NEJM198608143150702CrossRefPubMedWeb of ScienceGoogle Scholar

↵Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 1988;20:60–5. doi:10.1249/00005768-198802000-00009CrossRefPubMedWeb of ScienceGoogle Scholar

↵McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol 1989;31:617–22. doi:10.1111/j.1365-2265.1989.tb01286.xCrossRefPubMedGoogle Scholar

↵Koehler K, Hoerner NR, Gibbs JC, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci 2016;34:1921–9. doi:10.1080/02640414.2016.1142109Google Scholar

↵Papageorgiou M, Dolan E, Elliott-Sale KJ, et al. Reduced energy availability: implications for bone health in physically active populations. Eur J Nutr 2018;57:1. doi:10.1007/s00394-017-1498-8Google Scholar

↵Papageorgiou M, Elliott-Sale KJ, Parsons A, et al. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017;105:191–9. doi:10.1016/j.bone.2017.08.019Google Scholar

↵Gordon CM, Ackerman KE, Berga SL, et al. Functional hypothalamic amenorrhea: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2017;102:1413–39. doi:10.1210/jc.2017-00131Google Scholar

↵Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 2007;39:1867–82. doi:10.1249/mss.0b013e318149f111CrossRefPubMedWeb of ScienceGoogle Scholar

↵Curry EJ, Logan C, Ackerman K, et al. Female athlete triad awareness among multispecialty physicians. Sports Med Open 2015;1:38. doi:10.1186/s40798-015-0037-5Google Scholar

↵Reed JL, De Souza MJ, Mallinson RJ, et al. Energy availability discriminates clinical menstrual status in exercising women. J Int Soc Sports Nutr 2015;12:11. doi:10.1186/s12970-015-0072-0Google Scholar

↵Ackerman KE, Nazem T, Chapko D, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab 2011;96:3123–33. doi:10.1210/jc.2011-1614CrossRefPubMedWeb of ScienceGoogle Scholar

↵Ackerman KE, Putman M, Guereca G, et al. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone 2012;51:680–7. doi:10.1016/j.bone.2012.07.019CrossRefPubMedWeb of ScienceGoogle Scholar

↵De Souza MJ, West SL, Jamal SA, et al. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone 2008;43:140–8. doi:10.1016/j.bone.2008.03.013CrossRefPubMedWeb of ScienceGoogle Scholar

↵Andreoli A, Monteleone M, Van Loan M, et al. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc 2001;33:507–11. doi:10.1097/00005768-200104000-00001PubMedWeb of ScienceGoogle Scholar

↵Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc 2008;40:2015–21. doi:10.1249/MSS.0b013e3181822ea0CrossRefPubMedWeb of ScienceGoogle Scholar

↵Fredericson M, Chew K, Ngo J, et al. Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med 2007;41:664–8. doi:10.1136/bjsm.2006.030783Abstract/FREE Full TextGoogle Scholar

↵Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone 2006;39:880–5. doi:10.1016/j.bone.2006.03.012CrossRefPubMedWeb of ScienceGoogle Scholar

↵Morel J, Combe B, Francisco J, et al. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 2001;12:152–7. doi:10.1007/s001980170148CrossRefPubMedWeb of ScienceGoogle Scholar

↵Nichols JF, Rauh MJ. Longitudinal changes in bone mineral density in male master cyclists and nonathletes. J Strength Cond Res 2011;25:727–34. doi:10.1519/JSC.0b013e3181c6a116CrossRefPubMedGoogle Scholar

↵Stewart AD, Hannan J. Total and regional bone density in male runners, cyclists, and controls. Med Sci Sports Exerc 2000;32:1373–7. doi:10.1097/00005768-200008000-00003CrossRefPubMedWeb of ScienceGoogle Scholar

↵Tenforde AS, Fredericson M, Sayres LC, et al. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med 2015;43:1494–504. doi:10.1177/0363546515572142CrossRefPubMedGoogle Scholar

↵Wilson G, Hill J, Sale C, et al. Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: implications for athlete welfare. Appl Physiol Nutr Metab 2015;40:1318–20. doi:10.1139/apnm-2015-0354Google Scholar

↵Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 1989;21:66–70. doi:10.1249/00005768-198902000-00012CrossRefPubMedWeb of ScienceGoogle Scholar

↵De Souza MJ, Nattiv A, Joy E, et al. Expert Panel. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med 2014;48:289. doi:10.1136/bjsports-2013-093218Abstract/FREE Full TextGoogle Scholar

↵Thralls KJ, Nichols JF, Barrack MT, et al. Body mass-related predictors of the female athlete triad among adolescent athletes. Int J Sport Nutr Exerc Metab 2016;26:17–25. doi:10.1123/ijsnem.2015-0072Google Scholar

↵Ackerman KE, Cano Sokoloff N, DE Nardo Maffazioli G, et al. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc 2015;47:1577–86. doi:10.1249/MSS.0000000000000574Google Scholar

↵Barrack MT, Gibbs JC, De Souza MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med 2014;42:949–58. doi:10.1177/0363546513520295CrossRefPubMedWeb of ScienceGoogle Scholar

↵Tenforde AS, Carlson JL, Chang A, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med 2017;45:302–10. doi:10.1177/0363546516676262Google Scholar

↵Melin A, Tornberg ÅB, Skouby S, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports 2015;25:610–22. doi:10.1111/sms.12261Google Scholar

↵Woods AL, Garvican-Lewis LA, Lundy B, et al. New approaches to determine fatigue in elite athletes during intensified training: Resting metabolic rate and pacing profile. PLoS One 2017;12:e0173807–17. doi:10.1371/journal.pone.0173807Google Scholar

↵Koehler K, De Souza MJ, Williams NI. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations. Eur J Clin Nutr 2017;71:365–71. doi:10.1038/ejcn.2016.203Google Scholar

↵Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med 2017;47:1721–37. doi:10.1007/s40279-017-0706-2Google Scholar

↵Ackerman KE, Holtzman B, Cooper KM, et al. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport (RED-S). Br J Sports Med 2018. In press.Google Scholar

↵Lantzouni E, Frank GR, Golden NH, et al. Reversibility of growth stunting in early onset anorexia nervosa: a prospective study. J Adolesc Health 2002;31:162–5. doi:10.1016/S1054-139X(02)00342-7CrossRefPubMedWeb of ScienceGoogle Scholar

↵Modan-Moses D, Yaroslavsky A, Kochavi B, et al. Linear growth and final height characteristics in adolescent females with anorexia nervosa. PLoS One 2012;7:e45504–8. doi:10.1371/journal.pone.0045504CrossRefPubMedGoogle Scholar

↵Modan-Moses D, Yaroslavsky A, Novikov I, et al. Stunting of growth as a major feature of anorexia nervosa in male adolescents. Pediatrics 2003;111:270–6. doi:10.1542/peds.111.2.270Abstract/FREE Full TextGoogle Scholar

↵Fazeli PK, Klibanski A. Determinants of GH resistance in malnutrition. J Endocrinol 2014;220:R57–R65. doi:10.1530/JOE-13-0477Abstract/FREE Full TextGoogle Scholar

↵Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 1996;81:4301–9. doi:10.1210/jcem.81.12.8954031CrossRefPubMedWeb of ScienceGoogle Scholar

↵Waters DL, Qualls CR, Dorin R, et al. Increased pulsatility, process irregularity, and nocturnal trough concentrations of growth hormone in amenorrheic compared to eumenorrheic athletes. J Clin Endocrinol Metab 2001;86:1013–9. doi:10.1210/jc.86.3.1013CrossRefPubMedWeb of ScienceGoogle Scholar

↵O’Donnell E, Goodman JM, Harvey PJ. Clinical review: cardiovascular consequences of ovarian disruption: a focus on functional hypothalamic amenorrhea in physically active women. J Clin Endocrinol Metab 2011;96:3638–48. doi:10.1210/jc.2011-1223CrossRefPubMedGoogle Scholar

↵Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab 2005;90:1354–9. doi:10.1210/jc.2004-1286CrossRefPubMedWeb of ScienceGoogle Scholar

↵Hoch AZ, Jurva JW, Staton MA, et al. Athletic amenorrhea and endothelial dysfunction. WMJ 2007;106:301–6.PubMedGoogle Scholar

↵O’Donnell E, Goodman JM, Mak S, et al. Discordant orthostatic reflex renin-angiotensin and sympathoneural responses in premenopausal exercising-hypoestrogenic women. Hypertension 2015;65:1089–95. doi:10.1161/HYPERTENSIONAHA.114.04976Google Scholar

↵Spaulding-Barclay MA, Stern J, Mehler PS. Cardiac changes in anorexia nervosa. Cardiol Young 2016;26:623–8. doi:10.1017/S104795111500267XGoogle Scholar

↵Norris ML, Harrison ME, Isserlin L, et al. Gastrointestinal complications associated with anorexia nervosa: A systematic review. Int J Eat Disord 2016;49:216–37. doi:10.1002/eat.22462Google Scholar

↵Shimizu K, Suzuki N, Nakamura M, et al. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners. J Strength Cond Res 2012;26:1402–6. doi:10.1519/JSC.0b013e31822e7a6cPubMedGoogle Scholar

↵Drew M, Vlahovich N, Hughes D, et al. Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. Br J Sports Med 2018;52:47–53. doi:10.1136/bjsports-2017-098208Abstract/FREE Full TextGoogle Scholar

↵Drew MK, Vlahovich N, Hughes D, et al. A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. J Sci Med Sport 2017;20:745–50. doi:10.1016/j.jsams.2017.02.010Google Scholar

↵De Souza MJ, Hontscharuk R, Olmsted M, et al. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite 2007;48:359–67. doi:10.1016/j.appet.2006.10.009CrossRefPubMedWeb of ScienceGoogle Scholar

↵Bomba M, Gambera A, Bonini L, et al. Endocrine profiles and neuropsychologic correlates of functional hypothalamic amenorrhea in adolescents. Fertil Steril 2007;87:876–85. doi:10.1016/j.fertnstert.2006.09.011CrossRefPubMedWeb of ScienceGoogle Scholar

↵Marcus MD, Loucks TL, Berga SL. Psychological correlates of functional hypothalamic amenorrhea. Fertil Steril 2001;76:310–6. doi:10.1016/S0015-0282(01)01921-5CrossRefPubMedWeb of ScienceGoogle Scholar

↵Bomba M, Corbetta F, Bonini L, et al. Psychopathological traits of adolescents with functional hypothalamic amenorrhea: a comparison with anorexia nervosa. Eat Weight Disord 2014;19:41–8. doi:10.1007/s40519-013-0056-5Google Scholar

↵Petrie T, Galli N, Greenleaf C, et al. Psychosocial correlates of bulimic symptomatology among male athletes. Psychol Sport Exerc 2014;15:680–7. doi:10.1016/j.psychsport.2013.09.002Google Scholar

↵Kong P, Harris LM. The sporting body: body image and eating disorder symptomatology among female athletes from leanness focused and nonleanness focused sports. J Psychol 2015;149:141–60. doi:10.1080/00223980.2013.846291CrossRefPubMedGoogle Scholar

↵Sundgot-Borgen J. Prevalence of eating disorders in elite female athletes. Int J Sport Nutr 1993;3:29–40. doi:10.1123/ijsn.3.1.29PubMedWeb of ScienceGoogle Scholar

↵Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med 2004;14:25–32. doi:10.1097/00042752-200401000-00005CrossRefPubMedWeb of ScienceGoogle Scholar

↵Sykora C, Grilo CM, Wilfley DE, et al. Eating, weight, and dieting disturbances in male and female lightweight and heavyweight rowers. Int J Eat Disord 1993;14:203–11. doi:10.1002/1098-108X(199309)14:2<203::AID-EAT2260140210>3.0.CO;2-VCrossRefPubMedWeb of ScienceGoogle Scholar

↵Thiemann P, Legenbauer T, Vocks S, et al. Eating disorders and their putative risk factors among female German professional athletes. Eur Eat Disord Rev 2015;23:269–76. doi:10.1002/erv.2360Google Scholar

↵Martinsen M, Bratland-Sanda S, Eriksson AK, et al. Dieting to win or to be thin? A study of dieting and disordered eating among adolescent elite athletes and non-athlete controls. Br J Sports Med 2010;44:70–6. doi:10.1136/bjsm.2009.068668Abstract/FREE Full TextGoogle Scholar

↵Martinsen M, Sundgot-Borgen J. Higher prevalence of eating disorders among adolescent elite athletes than controls. Med Sci Sports Exerc 2013;45:1188–97. doi:10.1249/MSS.0b013e318281a939CrossRefPubMedWeb of ScienceGoogle Scholar

↵Fairburn CG, Cooper Z, O’Connor M. Eating disorder examination. Cogn Behav Ther Eat Disord 2008:270–308.Google Scholar

↵American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, D.C: American Psychiatric Association, 2013.Google Scholar

↵Vo M, Accurso EC, Goldschmidt AB, et al. The impact of DSM-5 on eating disorder diagnoses. Int J Eat Disord 2017;50:578–81. doi:10.1002/eat.22628Google Scholar

↵Stice E, South K, Shaw H. Future directions in etiologic, prevention, and treatment research for eating disorders. J Clin Child Adolesc Psychol 2012;41:845–55. doi:10.1080/15374416.2012.728156CrossRefPubMedGoogle Scholar

↵Arthur-Cameselle J, Sossin K, Quatromoni P. A qualitative analysis of factors related to eating disorder onset in female collegiate athletes and non-athletes. Eat Disord 2017;25:199–215. doi:10.1080/10640266.2016.1258940Google Scholar

↵Krentz EM, Warschburger P. A longitudinal investigation of sports-related risk factors for disordered eating in aesthetic sports. Scand J Med Sci Sports 2013;23:303–10. doi:10.1111/j.1600-0838.2011.01380.xGoogle Scholar

↵Sundgot-Borgen J. Risk and trigger factors for the development of eating disorders in female elite athletes. Med Sci Sports Exerc 1994;26:414–9. doi:10.1249/00005768-199404000-00003PubMedWeb of ScienceGoogle Scholar

↵Shanmugam V, Jowett S, Meyer C. Interpersonal difficulties as a risk factor for athletes’ eating psychopathology. Scand J Med Sci Sports 2014;24:469–76. doi:10.1111/sms.12109Google Scholar

↵Stirling A, Kerr G. Perceived vulnerabilities of female athletes to the development of disordered eating behaviours. Eur J Sport Sci 2012;12:262–73. doi:10.1080/17461391.2011.586437Google Scholar

↵Baskaran C, Plessow F, Ackerman KE, et al. A cross-sectional analysis of verbal memory and executive control across athletes with varying menstrual status and non-athletes. Psychiatry Res 2017;258:605–6. doi:10.1016/j.psychres.2016.12.054Google Scholar

↵Burden RJ, Morton K, Richards T, et al. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br J Sports Med 2015;49:1389–97. doi:10.1136/bjsports-2014-093624Abstract/FREE Full TextGoogle Scholar

↵Geesmann B, Gibbs JC, Mester J, et al. Association between energy balance and metabolic hormone suppression during ultraendurance exercise. Int J Sports Physiol Perform 2017;12:984–9. doi:10.1123/ijspp.2016-0061Google Scholar

↵Hagmar M, Berglund B, Brismar K, et al. Body composition and endocrine profile of male Olympic athletes striving for leanness. Clin J Sport Med 2013;23:197–201. doi:10.1097/JSM.0b013e31827a8809CrossRefPubMedGoogle Scholar

↵Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol 1998;23:293–306. doi:10.1139/h98-017CrossRefPubMedWeb of ScienceGoogle Scholar

↵Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train 2010;45:243–52. doi:10.4085/1062-6050-45.3.243CrossRefPubMedWeb of ScienceGoogle Scholar

↵Thein-Nissenbaum JM, Carr KE, Hetzel S, et al. Disordered eating, menstrual irregularity, and musculoskeletal injury in high school athletes: a comparison of oral contraceptive pill users and nonusers. Sports Health 2014;6:313–20. doi:10.1177/1941738113498852CrossRefPubMedGoogle Scholar

↵El Ghoch M, Soave F, Calugi S, et al. Eating disorders, physical fitness and sport performance: a systematic review. Nutrients 2013;5:5140–60. doi:10.3390/nu5125140CrossRefPubMedWeb of ScienceGoogle Scholar

↵Fogelholm M. Effects of bodyweight reduction on sports performance. Sports Med 1994;18:249–67. doi:10.2165/00007256-199418040-00004CrossRefPubMedWeb of ScienceGoogle Scholar

↵Tarnopolsky MA, Zawada C, Richmond LB, et al. Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol 2001;91:225–30. doi:10.1152/jappl.2001.91.1.225PubMedWeb of ScienceGoogle Scholar

↵Areta JL, Burke LM, Camera DM, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. AJP Endocrinol Metab 2014;306:E989–97.Google Scholar

↵Silva MR, Paiva T. Poor precompetitive sleep habits, nutrients’ deficiencies, inappropriate body composition and athletic performance in elite gymnasts. Eur J Sport Sci 2016;16:726–35. doi:10.1080/17461391.2015.1103316Google Scholar

↵Tornberg ÅB, Melin A, Koivula FM, et al. Reduced neuromuscular performance in amenorrheic elite endurance athletes. Med Sci Sports Exerc 2017;49:2478–85. doi:10.1249/MSS.0000000000001383Google Scholar

↵Mooses M, Hackney AC. Anthropometrics and body composition in East African runners: potential impact on performance. Int J Sports Physiol Perform 2017;12:422–30. doi:10.1123/ijspp.2016-0408Google Scholar

↵Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc 2013;45:985–96. doi:10.1249/MSS.0b013e31827e1bdcCrossRefPubMedWeb of ScienceGoogle Scholar

↵Brown KN, Wengreen HJ, Beals KA. Knowledge of the female athlete triad, and prevalence of triad risk factors among female high school athletes and their coaches. J Pediatr Adolesc Gynecol 2014;27:278–82. doi:10.1016/j.jpag.2013.11.014Google Scholar

↵Feldmann JM, Belsha JP, Eissa MA, et al. Female adolescent athletes’ awareness of the connection between menstrual status and bone health. J Pediatr Adolesc Gynecol 2011;24:311–4. doi:10.1016/j.jpag.2011.05.011CrossRefPubMedGoogle Scholar

↵Kroshus E, Sherman RT, Thompson RA, et al. Gender differences in high school coaches’ knowledge, attitudes, and communication about the female athlete triad. Eat Disord 2014;22:193–208. doi:10.1080/10640266.2013.874827Google Scholar

↵Mukherjee S, Chand V, Wong XX, et al. Perceptions, awareness and knowledge of the female athlete triad amongst coaches – are we meeting the expectations for athlete safety? Int J Sport Sci Coach 2016;11:545–51.Google Scholar

↵Pantano KJ. Current knowledge, perceptions, and interventions used by collegiate coaches in the U.S. regarding the prevention and treatment of the female athlete triad. N Am J Sports Phys Ther 2006;1:195–207.PubMedGoogle Scholar

↵Pantano KJ. Knowledge, attitude, and skill of high school coaches with regard to the female athlete triad. J Pediatr Adolesc Gynecol 2017;30:540–5. doi:10.1016/j.jpag.2016.09.013Google Scholar

↵Troy K, Hoch AZ, Stavrakos JE. Awareness and comfort in treating the female athlete triad: are we failing our athletes? WMJ 2006;105:21.PubMedGoogle Scholar

↵Kroshus E, Fischer AN, Nichols JF. Assessing the awareness and behaviors of U.S. high school nurses with respect to the female athlete triad. J Sch Nurs 2015;31:272–9. doi:10.1177/1059840514563760CrossRefPubMedGoogle Scholar

↵Miller SM, Kukuljan S, Turner AI, et al. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab 2012;22:131–8. doi:10.1123/ijsnem.22.2.131PubMedGoogle Scholar

↵Torres-McGehee TM, Pritchett KL, Zippel D, et al. Sports nutrition knowledge among collegiate athletes, coaches, athletic trainers, and strength and conditioning specialists. J Athl Train 2012;47:205–11. doi:10.4085/1062-6050-47.2.205PubMedGoogle Scholar

↵Mountjoy M, Costa A, Budgett R, et al. Health promotion through sport: international sport federations’ priorities, actions and opportunities. Br J Sports Med 2018;52:54–60. doi:10.1136/bjsports-2017-097900Abstract/FREE Full TextGoogle Scholar

↵Brown KN, Wengreen HJ, Beals KA, et al. Effects of peer-education on knowledge of the female athlete triad among high school track and field athletes: a pilot study. Women Sport Phys Activity J 2016;24:1–6. doi:10.1123/wspaj.2014-0058Google Scholar

↵Kilpela LS, Blomquist K, Verzijl C, et al. The body project 4 all: a pilot randomized controlled trial of a mixed-gender dissonance-based body image program. Int J Eat Disord 2016;49:591–602. doi:10.1002/eat.22562Google Scholar

↵Temme KE, Hoch AZ, Jonardi M, et al. Prevalence of the female athlete triad and effect of a peer-based mentoring program on triad knowledge in high school girls. Clin J Sport Med 2013;23:134–5.Google Scholar

↵Valliant MW, Emplaincourt HP, Wenzel RK, et al. Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. Nutrients 2012;4:506–16. doi:10.3390/nu4060506PubMedGoogle Scholar

↵Bar RJ, Cassin SE, Dionne MM, et al. Eating disorder prevention initiatives for athletes: a review. Eur J Sport Sci 2016;16:325–35. doi:10.1080/17461391.2015.1013995Google Scholar

↵Becker CB, McDaniel L, Bull S, et al. Can we reduce eating disorder risk factors in female college athletes? A randomized exploratory investigation of two peer-led interventions. Body Image 2012;9:31–42. doi:10.1016/j.bodyim.2011.09.005CrossRefPubMedGoogle Scholar

↵Martinsen M, Bahr R, Børresen R, et al. Preventing eating disorders among young elite athletes: a randomized controlled trial. Med Sci Sports Exerc 2014;46:435–47. doi:10.1249/MSS.0b013e3182a702fcGoogle Scholar

↵Martinsen M, Sherman RT, Thompson RA, et al. Coaches’ knowledge and management of eating disorders: a randomized controlled trial. Med Sci Sports Exerc 2015;47:1070–8. doi:10.1249/MSS.0000000000000489Google Scholar

↵de Bruin APK. Athletes with eating disorder symptomatology, a specific population with specific needs. Curr Opin Psychol 2017;16:148–53. doi:10.1016/j.copsyc.2017.05.009Google Scholar

↵Fairburn CG, Beglin SJ. Assessment of eating disorders: interview or self-report questionnaire? Int J Eat Disord 1994;16:363–70.CrossRefPubMedWeb of ScienceGoogle Scholar

↵Garner DM, Garfinkel PE. The eating attitudes test: an index of the symptoms of anorexia nervosa. Psychol Med 1979;9:273–9. doi:10.1017/S0033291700030762CrossRefPubMedWeb of ScienceGoogle Scholar

↵Garner DM, Olmstead MP, Polivy J. Development and validation of a multidimensional eating disorder inventory for anorexia nervosa and bulimia. Int J Eat Disord 1983;2:15–34. doi:10.1002/1098-108X(198321)2:2<15::AID-EAT2260020203>3.0.CO;2-6CrossRefWeb of ScienceGoogle Scholar

↵Hill LS, Reid F, Morgan JF, et al. SCOFF, the development of an eating disorder screening questionnaire. Int J Eat Disord 2010;43:344–51. doi:10.1002/eat.20679PubMedGoogle Scholar

↵Hinton PS, Kubas KL. Psychosocial correlates of disordered eating in female collegiate athletes: validation of the ATHLETE questionnaire. J Am Coll Health 2005;54:149–56. doi:10.3200/JACH.54.3.149-156PubMedGoogle Scholar

↵McNulty KY, Adams CH, Anderson JM, et al. Development and validation of a screening tool to identify eating disorders in female athletes. J Am Diet Assoc 2001;101:886–92. doi:10.1016/S0002-8223(01)00218-8CrossRefPubMedWeb of ScienceGoogle Scholar

↵Steiner H, Pyle RP, Brassington GS, et al. The College Health Related Information Survey (C.h.R.I.s.-73): a screen for college student athletes. Child Psychiatry Hum Dev 2003;34:97–109. doi:10.1023/A:1027389923666CrossRefPubMedWeb of ScienceGoogle Scholar

↵Gibbs JC, Williams NI, Scheid JL, et al. The association of a high drive for thinness with energy deficiency and severe menstrual disturbances: confirmation in a large population of exercising women. Int J Sport Nutr Exerc Metab 2011;21:280–90. doi:10.1123/ijsnem.21.4.280PubMedGoogle Scholar

↵Plateau CR, Mcdermott HJ, Arcelus J, et al. Identifying and preventing disordered eating among athletes. What can we learn from coaches? Appetite 2013;71:483. doi:10.1016/j.appet.2013.06.052Google Scholar

↵Plateau CR, Arcelus J, Leung N, et al. Female athlete experiences of seeking and receiving treatment for an eating disorder. Eat Disord 2017;25:273–7. doi:10.1080/10640266.2016.1269551Google Scholar

↵Ljungqvist A, Jenoure P, Engebretsen L, et al. The International Olympic Committee (IOC) consensus statement on periodic health evaluation of elite athletes March 2009. Br J Sports Med 2009;43:631–43. doi:10.1136/bjsm.2009.064394FREE Full TextGoogle Scholar

↵American Academy of Family Physicians, American Academy of Pediatrics, American College of Sports Medicine. Preparticipation physical evaluation. 4th edn. Washington, DC: American Academy of Family Physicians, 2010.Google Scholar

↵Mountjoy M, Sundgot-Borgen J, Burke L, et al. RED-S CAT. Relative energy deficiency in sport (RED-S) clinical assessment tool (CAT). Br J Sports Med 2015;49:421–3. doi:10.1136/bjsports-2015-094873FREE Full TextGoogle Scholar

↵a DC, Matt KS, Manore MM, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr 1996;6:24–40.PubMedWeb of ScienceGoogle Scholar

↵Kopp-Woodroffe SA, Manore MM, Dueck CA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr 1999;9:70–88. doi:10.1123/ijsn.9.1.70PubMedWeb of ScienceGoogle Scholar

↵Mallinson RJ, Williams NI, Olmsted MP, et al. A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. J Int Soc Sports Nutr 2013;10:34. doi:10.1186/1550-2783-10-34CrossRefPubMedGoogle Scholar

↵Bhasin S, Cunningham GR, Hayes FJ, et al. Task Force, Endocrine Society. Testosterone therapy in men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2010;95:2536–59. doi:10.1210/jc.2009-2354CrossRefPubMedWeb of ScienceGoogle Scholar

↵Moreira CA, Bilezikian JP. Stress Fractures: concepts and therapeutics. J Clin Endocrinol Metab 2017;102:525–34. doi:10.1210/jc.2016-2720Google Scholar

↵Ruohola JP, Laaksi I, Ylikomi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res 2006;21:1483–8. doi:10.1359/jbmr.060607CrossRefPubMedWeb of ScienceGoogle Scholar

↵U.S. Department of Agriculture. USDA national nutrient database for standard reference. 2011 http://www.ars.usda.gov/ba/bhnrc/ndl.Google Scholar

↵Golden NH, Carey DE. Vitamin D in health and disease in adolescents: when to screen, whom to treat, and how to treat. Adolesc Med State Art Rev 2016;27:125–39.Google Scholar

↵Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911–30. doi:10.1210/jc.2011-0385CrossRefPubMedWeb of ScienceGoogle Scholar

↵Sacheck JM, Van Rompay MI, Chomitz VR, et al. Impact of three doses of Vitamin D3 on serum 25(OH)D deficiency and insufficiency in at-risk schoolchildren. J Clin Endocrinol Metab 2017;102:4496–505. doi:10.1210/jc.2017-01179Google Scholar

↵Kim BY, Kraus E, Fredericson M, et al. Serum vitamin D levels are inversely associated with time lost to bone stress injury in a cohort of NCAA Division I distance runners. Clin J Sport Med 2016:26.Google Scholar

↵Myburgh KH, Hutchins J, Fataar AB, et al. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med 1990;113:754–9. doi:10.7326/0003-4819-113-10-754CrossRefPubMedWeb of ScienceGoogle Scholar

↵Nieves JW, Melsop K, Curtis M, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. Pm R 2010;2:740–50. doi:10.1016/j.pmrj.2010.04.020CrossRefPubMedGoogle Scholar

↵US Department of Health and Human Services. 2015–2020 Dietary guidelines for Americans. Washington DC: USDA, 2015.Google Scholar

↵Berga SL, Loucks TL. Use of cognitive behavior therapy for functional hypothalamic amenorrhea. Ann N Y Acad Sci. 1092, 2006:114–29. doi:10.1196/annals.1365.010CrossRefPubMedWeb of ScienceGoogle Scholar

↵Michopoulos V, Mancini F, Loucks TL, et al. Neuroendocrine recovery initiated by cognitive behavioral therapy in women with functional hypothalamic amenorrhea: a randomized, controlled trial. Fertil Steril 2013;99:2084–91. doi:10.1016/j.fertnstert.2013.02.036CrossRefPubMedGoogle Scholar

↵Arends JC, Cheung MY, Barrack MT, et al. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab 2012;22:98–108. doi:10.1123/ijsnem.22.2.98PubMedGoogle Scholar

↵Joy E, Kussman A, Nattiv A. 2016 update on eating disorders in athletes: a comprehensive narrative review with a focus on clinical assessment and management. Br J Sports Med 2016;50:154–62. doi:10.1136/bjsports-2015-095735Abstract/FREE Full TextGoogle Scholar

↵Cobb KL, Bachrach LK, Sowers M, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc 2007;39:1464–73. doi:10.1249/mss.0b013e318074e532CrossRefPubMedWeb of ScienceGoogle Scholar

↵Ducher G, Turner AI, Kukuljan S, et al. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med 2011;41:587–607. doi:10.2165/11588770-000000000-00000CrossRefPubMedWeb of ScienceGoogle Scholar

↵Lopez LM, Chen M, Mullins Long S, et al. Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev 2015;7:CD009849. doi:10.1002/14651858.CD009849.pub3Google Scholar

↵Lopez LM, Grimes DA, Schulz KF, et al. Steroidal contraceptives: effect on bone fractures in women. Cochrane Database Syst Rev 2014:CD006033. doi:10.1002/14651858.CD006033.pub5Google Scholar

↵Misra M, Katzman D, Miller KK, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. Journal of Bone and Mineral Research 2011;26:2430–8. doi:10.1002/jbmr.447CrossRefPubMedGoogle Scholar

↵Ackerman KE, Singhal V, Baskaran C, et al. Transdermal 17-β estradiol has a beneficial effect on bone parameters assessed using HRpQCT compared to oral ethinyl estradiol-progesterone combination pills in oligo-amenorrheic athletes: a randomized controlled trial. Denver, Colorado: ASBMR, 2017.Google Scholar

↵Fazeli PK, Wang IS, Miller KK, et al. Teriparatide increases bone formation and bone mineral density in adult women with anorexia nervosa. The Journal of Clinical Endocrinology & Metabolism 2014;99:1322–9. doi:10.1210/jc.2013-4105Google Scholar

↵Temme KE, Hoch AZ. Recognition and rehabilitation of the female athlete triad/tetrad: a multidisciplinary approach. Curr Sports Med Rep 2013;12:190–9. doi:10.1249/JSR.0b013e318296190bCrossRefPubMedGoogle Scholar

↵Thompson RA, Sherman RT. Eating disorders in sport. Abingdon, UK: Routledge, 2011.Google Scholar

↵Clausen L, Lübeck M, Jones A. Motivation to change in the eating disorders: a systematic review. Int J Eat Disord 2013;46:755–63. doi:10.1002/eat.22156Google Scholar

↵Arthur-Cameselle JN, Quatromoni PA. Eating disorders in collegiate female athletes: factors that assist recovery. Eat Disord 2014;22:50–61. doi:10.1080/10640266.2014.857518Google Scholar

↵Giel KE, Hermann-Werner A, Mayer J, et al. GOAL study group. Eating disorder pathology in elite adolescent athletes. Int J Eat Disord 2016;49:553–62. doi:10.1002/eat.22511Google Scholar

↵Yager J, Power PSSansone RA, Sansone LA. Eating disorders and psychiatric co-morbidity: prevalence and treatment modifications. In: Yager J, Power PS, eds. Clinical manual of eating disorders. Washington DC: American Psychiatric Publishing Inc, 2007:79–112.Google Scholar